Современные реакторы

Реактор ВВЭР-1200

Флагманский продукт энергетического решения в составе интегрированного предложения Росатома – эволюционный реакторный дизайн ВВЭР-1200. Он был разработан на основе вариантов реактора ВВЭР-1000, которые строились для зарубежных заказчиков в 1990-е и 2000-е годы: АЭС «Бушер» (Иран), АЭС «Кунданкулам» (Индия), АЭС «Тяньвань» (Китай). Каждый параметр реактора постарались улучшить, а так же внедрить ряд дополнительных систем безопасности, позволяющих снизить вероятность выхода радиации при любых авариях и их сочетаниях за пределы герметичного реакторного отделения – контейнмента. 

В итоге ВВЭР-1200 отличается повышенной на 20% мощностью при сопоставимых с ВВЭР-1000 размерах оборудования, сроком службы в 60 лет, возможностью маневра мощностью в интересах энергосистемы, высоким КИУМ (90%), возможностью работать 18 месяцев без перегрузки топлива и другими улучшенными удельными показателями.

1.jpg

Научный руководитель проекта – РНЦ «Курчатовский институт» (г. Москва); разработчик - ОКБ «Гидропресс» (г. Подольск), основной изготовитель – «Атоммаш» (г. Волгодонск). 

Проект предусматривает выгорание топлива до 70 МВт•сут/кгU. Сейсмика (SL-2) -  ≤ 0,3 g. В качестве опций возможно использование тихоходной турбины и маневренного блока (диапазон 100-50-100). 

Довольно много переделок коснулось внутренних элементов реактора (шахты, выгородки, блока защитных труб, датчиков и т.д.), как в целях  предотвращения различных аварий, так и для обеспечения 60-летнего срока службы. В перспективе возможно использование МОКС-топлива.

В технологии ВВЭР используется двухконтурная ядерная паропроизводящая корпусная установка с реактором на тепловых нейтронах, в котором теплоносителем и замедлителем является обычная вода под давлением. Конструкция включает в себя четыре петли охлаждения с парогенератором, главным циркуляционным насосом (ГЦН), компенсатор давления, сбросная и аварийная арматура на паропроводах, емкости системы аварийного охлаждения активной зоны (САОЗ) реактора. Таким образом, ВВЭР-1200 сочетает в себе надежность давно проверенных инженерных решений с комплексом активных и пассивных систем безопасности, доработанных с учетом «постфукусимских» требований.

Технические решения, используемые в ВВЭР-1200 – такие как бассейн выдержки отработанного топлива внутри контайнмента, фильтры на выходе из межоболочного вентилируемого пространства, уникальная «ловушка расплава» с жертвенным материалом, не имеющая аналогов пассивная система отвода тепла, – позволяют называть его реакторной установкой поколения III+. 

Интересны проектные решения системы САОЗ. Это емкости с холодной борной кислотой под давлением. В случае разрыва корпуса или трубопроводов они обеспечивают ввод борной кислоты в реактор, глуша его и обеспечивая охлаждение. Применение этой, а также других систем в комплексе гарантирует высокий уровень внутренней безопасности реакторной установки.

Первый энергоблок с реактором ВВЭР-1200 – энергоблок №6 Нововоронежской АЭС-2 – был включен в энергосистему России в августе 2016 года. Энергоблоки поколения III+ в настоящее время сооружаются в США, Франции и других странах, однако именно шестой энергоблок Нововоронежской АЭС стал первым в мире блоком последнего поколения, который вышел на этап физического пуска и опытно-промышленную эксплуатацию. Там же строится ещё один аналогичный блок. 

ВВЭР-1200 также используется на площадке Ленинградской АЭС-2 (энергоблок №5 ЛАЭС уже построен) и на Белорусской АЭС (близ г. Островец Гродненской области). Генеральным подрядчиком сооружения всех этих новых энергоблоков является Группа компаний ASE.

Справочно:

В свое время идея реактора ВВЭР была предложена в Курчатовском институте С.М. Фейнбергом. Работы над проектом начались в 1954 году, в 1955 году ОКБ «Гидропресс» приступило к его разработке. Научное руководство осуществляли И.В. Курчатов и А.П. Александров. Общее название реакторов этого типа в других странах –  PWR, они являются основой мировой мирной ядерной энергетики. Первая станция с таким реактором была запущена в США в 1957 году (АЭС «Шиппингпорт»). Первый советский ВВЭР (модификации ВВЭР-210) был введен в эксплуатацию в 1964 году на энергоблоке №1 Нововоронежской АЭС. Первой зарубежной станцией с реактором ВВЭР стала введённая в работу в 1966 году АЭС «Райнсберг» (ГДР, позже – Федеративная республика Германия).


Реактор БН-800

БН-800 (от «быстрый натриевый») – реактор на быстрых нейтронах с натриевым теплоносителем российского дизайна, сооруженный на энергоблоке №4 Белоярской АЭС (близ города Заречный Свердловской области). На нем планируется произвести окончательную отработку технологии реакторов на быстрых нейтронах, которая позволит в перспективе замкнуть ядерный топливный цикл.

Проект реактора БН-800 был в 1983-1993 годах разработан во ФГУП ГНЦ РФ-ФЭИ им. Лейпунского (г. Обнинск, Калужская обл.). В качестве предприятия-разработчика выступило АО «СПбАЭП» (ныне – предприятие Группы компаний ASE), конструктора – АО «ОКБМ им. Африкантова».  Электрическая мощность реактора составляет 880 МВт, тепловая мощность  2100 МВт.

БН800.jpg

Особенности энергоблока с БН-800 – это его самозащищённость от внешних и внутренних воздействий. В проекте предусмотрены пассивные средства воздействия на реактивность, системы аварийного расхолаживания через теплообменники, поддон для сбора расплавленного топлива. Важная характеристика – нулевой натриевый пустотный эффект реактивности. Все это обеспечивает минимальную вероятность аварии с расплавлением активной зоны и выделения плутония в топливном цикле при переработке облучённого ядерного топлива.

Задачи, которые ставятся в процессе эксплуатации реактора –экспериментальная демонстрация ключевых компонентов замкнутого топливного цикла, отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности. 

В качестве топлива в БН-800 может использоваться как обычное (с оксидом урана), так и уран-плутониевое МОКС-топливо (смесь 235U и 239Pu). Применение в этом «быстром» реакторе уран-плутониевого топлива позволяет не только использовать запасы энергетического плутония, но и утилизировать оружейный плутоний, а также сжигать долгоживущие изотопы актиноиды из облучённого топлива тепловых реакторов. Это дает надежду на формирование в перспективе экологически чистого замкнутого ядерного топливного цикла.

Ввод в промышленную эксплуатацию БН-800 доказал, что Росатом сохранил компетенции в области практического